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Convergence lI: t Stats and Incremental Goodness-of-Fit

e Convergence I: In SLR Inference, you saw the convergence of inference and assessment

metrics, driven by relationship between t statistics and the R* measure of goodness of fit, as
well as SSE/SSR:

R2 SSE
=(n-2)=—.
SSR

e Convergence Il: We have similar results in MLR Inference, where the precision of

estimation is jointly driven by the degrees of freedom (dofs) and now the marginal

2 — —
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(incremental) impact that each RHS variable has on R“ or SSE''s: Precision in estimation is driven by:
AR2 ASSE, » the degrees of freedom, n-k-1, and

ﬂx _dOfS _R? = dofs SSR » incremental R-sq (SSE)

where dofs=n—k -1, and AR? (ASSE, )is the increase in R* (SSE)when x is the last
variable added to the model (R*and SSR are for the Full Model)

e The SLR and MLR formulas are in fact consistent: R* in an SLR model is the same as AR’
when going from no RHS variables (other than the constant term) to the SLR model.



Convergence

Dropping One RHS Variable
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Full Model
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brozek

0.187***
(14.48)

~0.650%**
(-6.29)

dropped

31.16%**
(4.51)

-0.136%**
(-7.08)

dropped
0.915***
(17.42)

—41 35%**
(-17.14)

dropped
-0.342%***
(-4.55)

0.595%**
(23.30)

-12.12*
(-2.17)
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(-5.41)

-0.118
(-1.43)

0.880%***
(15.19)

~32.66%**
(-5.01)
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mss (SSE)
rss (SSR)

0.7187
10,837.7
4,241.3

0.6881
10,375.8
4,703.2

0.7210
1,0872.6
4,206.5

t statistics

in parentheses
* p<0.05, ** p<0.01, *** p<0.001

Il — An example: bodyfat |

Looking at abd as the last variable, so comparing Models (1) and (4):

AR? . -, .
2 = (dofs) S _ pgg:7210— 4014 ;0 2596 _ 45 1q)2
Pand 1-R 1-.721 1-.721
2 _ ofs ASSEwy _ ,,510,8726-6,958.1 _, 39145
Pova SSR 4,206.5 4,206.5

. AR? ASSE

And so as advertised, t2 = dofs *— = dofs SSE,
By 1-R SSR

= (15.19)°



Dropping One RHS Variable
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0.187***
(14.48)
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(-1.43)

0.880%***
(15.19)

-32._66***
(-5.01)

R-sq
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rss (SSR)
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in parentheses
* p<0.05, ** p<0.01, *** p<0.001

Convergence Il — Another example: bodyfat Il

Looking at the t stats in an MLR model: the square of the t stats, tg , are directly

proportional to each variable's marginal/incremental contribution to R? (SSE's):

. AR’ ASSE
e SSX,fmamﬂwoRHSvmhM%xamu.
t2 AR’ ASSE,

Comparing wgt and abd:
= Since ARZ, =.2596 and AR?

wgt

=.7210-.6881=.0329, we have:

ARZ

Wgt ﬂwgl

2
ARG _ 2596 _ oo Ui {15.19}2
.0329 t2 5.41

*= Andsince ASSE,, =3,914.5 and ASSEWgt =10,872.6 -10,375.8 = 496.8, we
have:

ASSE,, _ 39145 __ o

e _(15.19)2
ASSE,, 4968 5.41

wgt

So variables with larger t stats have greater marginal impacts on R? and SSE ... and
vice-versa. Who saw this coming?



Convergence ll: ... and WhatsNew,

AR? and ASSE, can be found in the regression of y on WhatsNew about x, where AR? is the
R? in the WhatsNew SLR regression, and ASSE, is the SSE in that model.

Example: Look at the previous example, and focus again on the abd variable: .
ARZ , =.2596 and ASSE, , = 3,914.5.

And regress brozek on WhatsNew about abd: 'll} M

. reg abd wgt hgt
. predict whatsnew, resid

. reg brozek whatsnew

Source | SS df MS Number of obs = 252
————————————— Fom F(1, 250) = 87.65
Model | 3914.4903 1 3914.4903 Prob > F = 0.0000
Residual | 11164.5263 250 44.6581053 R-squared = 0.2596
————————————— +---—-————————---—--—-—-—--—--—  Adj R-squared = 0.2566
Total | 15079.0166 251 60.0757635 Root MSE = 6.6827

brozek | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ -
whatsnew | .879846 -0939765 9.36 0.000 .6947594 1.064932
_cons | 18.93849 .4209688 44_.99  0.000 18.10939 19.76759



Comparing MLR Models II: t stats and adjusted R?

e Changes in adjusted R-squared (R?*) are directly tied to whether or not the t stats of added
variables are larger than 1 in magnitude, or not.

e R?will always increase (decrease) when variables with t stats larger (smaller) than one in
magnitude are added to the MLR model... and vice-versa when dropping variables from a
model.

increases >
e With the addition of a RHS variable: R? | stays the same | when |t| | = |1
decreases <




wgt

abd
0.898***

t statistics

... More about t stats and adjusted R?

(€Y @)
Brozek Brozek
-0.650*** -0.118

(-6.29) (-1.43)
0.187*** -0.120***
(14.48) (-5.41D)
0.880***
(15.19)
31.16*** -32.66***
(4.51) (-5.0D)
252 252
0.461 0.721
0.457 0.718
5.711 4.118

in parentheses

* p<0.05, ** p<0.01, *** p<0.001

€)

Brozek
-0.131
(-1.51D)

~0.108**
(-3.18)

0.883%**
(15.13)

~0.0564
(-0.49)

€Y

Brozek
-0.138
(-1.55)

~0.100*
(-2.52)

(12.62)

~0.0723
(-0.58)

~0.0348
(-0.38)

~25.86*
(-2.01)

Notice that in going from Model (1) to (2), R* increased and the
added (or last or incremental) variable (abd) had a t stat of 15.19,
well above one in magnitude. And in going from (2) to (3), and (3)

to (4), R? decreased in both cases, and the t stats of the added
variables were both less than one in magnitude.

This is useful if your goal is to maximize R*. It's never a great idea
to just worry about adjusted R-squared, but you wouldn’t be the first
analyst to do so.



onwards to Heteroskedasticity
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